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A Study of Nonlinearities and Intermodulation
Characteristics of 3-Port Distributed Circulators

YOU-SUN WU, MEMBER, 1EEE, WALTER H. KU, mMEMBER, IEEE, AND JOHN E. ERICKSON

Abstract—Results of a study of nonlinearities and intermodulation
characteristics of 3-port distributed circulators are presented. Based
on a rigorous theoretical analysis of the third-order nonlinearity in
ferrites, analytical results are derived for the field strength and the
power level of the intermodulation signal. These explicit results are
applicable to high-power distributed circulators operating in VHF,
UHF, and microwave - frequencies. Measured intermodulation
characteristics of an experimental distributed VHF high-power
circulator are also presented. ‘

‘1. INTRODUCTION

N THE small-signal approximation of ferrite behavior,
higher order terms in magnetization and fields are
neglected, thereby linearizing the equation of motion.
However, for a number of practical applications the non-
linearities inherent in ferrites and large-signal effects be-
come important. Examples of devices in which the ferrite
nonlinearities are actually utilized include harmonic gen-
erators and mixers [17-[4], ferrimagnetic amplifiers [4 -
[7], and limiters [8]. More generally, large-signal and
nonlinear effects are important considerations in almost
all ferrite applications to ascertain the limitations on
device characteristics for high-power operation. ‘

This paper presents results on a study of nonlinearities
and intermodulation characteristics of high-power circula-
tors. Explicit results presented are for distributed 3-port
or Y-junction eirculators. Third-order nonlinearity of
ferrites generates intermodulation noise in either lumped
or distributed circulators. It is most severe in cases where
collocated transmitting antennas are used. In these cases,
it can seriously desensitize a receiver that is tuned to the
frequency of any of the intermodulation products. The
purpose of this paper is to give a complete theoretical
study of the third-order nonlinearity of ferrites and its
effects on circulators. The final goal is to derive some
criteria for choosing ferrite materials such that a more
“linear” circulator can be designed. These criteria will be
useful for choosing material parameters to obtain better
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linearity characteristics without degrading other charac-
teristics such as bandwidth and isolation.

In Section II, the third-order nonlinearities of ferrite
are derived by an iterative proeedure. This procedure
gives accurate results without requiring an excessive
amount of computation. In Section III, the coupling
relationships between nonlinear third-order fields and
magnetizations are derived. In Section IV, an illustrative
example is presented for a specific VHF distributed 3-port
circulator. The results derived using the theoretical
analysis presented in this paper are compared to some
experimental results actually measured on a hlgh—power
VHF isolator (Addington Laboratory).

II. NONLINEARITY AND INTERMODULATION
NOISE IN FERRITES

Nonlinearity and large-signal effects of ferrites have
been studied previously by Pippin [2], Jepsen [4], et al.
mainly for the application of harmonic generation and
frequency mixing. Their principal interest is in the
second-order nonlinearities which produce the second
harmonic and frequency mixing. In this paper, however,
the third-order nonlinearity of ferrites is investigated and
applied to calculate the dominant third-order intermodula~
tion product in ferrites in 3-port circulators.

‘There are two types of nonlinearities. One arises under
the agsumption of uniform precession of the magnetization.
The other is the nonuniform magnetization which causes
the spin waves and has been studied previously by
Suhl [8]. Since circulators are biased by a uniform
magnetic field, this paper is confined to the study of non-
linearity which occurs under uniform precession.

The macroscopic theory of microwave ferrite devices is
based on the equation of motion in terms of the magnetiza-
tion vector M. The well-known equation of motion [9]
is given by

dM
— = yM X H 1
@ = X (1)
where
M magnetization in gauss;
H magnetic field inside the material in oersteds;
¥ = 1.76 X 10" rad (s:-Oe)™* is the gyromagnetic

ratio;
¢t  time in seconds.

The total magnetic field in (1) consists of the de
magnetic bias field Hy and the magnetic field h
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H = H, -} h. (2)

Similarly, the total magnetization is composed of the de
magnetization component M, and the RF magnetization
component m

M= M4+ m. (3)

Cylindrical coordinates are used here with the z-axis
parallel to the direction of the d¢ magnetic field. Sub-
stituting (2) and (3) into (1) and expanding into the
three field components result in the following fundamental
relationships:

T AIma(Ho — My — mo) — ho(My + m)] (4
(%f = ’YI:hr(MO + mz) — 'Inr(HO - MO - mZ)] (5)
dzz = y(mho — mahs). ©®)

In the small-signal approximation, higher order terms
of m and h in (4)-(6) are neglected and the preceding
equations reduce to two simultaneous linear differential
equations in m, and mg (since (6) has no first-order terms).
In this manner, the linearized theory of ferrltes which is
indicated by the Polder permeability tensor fi is derived.

The Polder [10] permeability tensor f is given by

b Jge O

R=up|—Jdk n» O (7)
0 0 1

where
_ 1 + Wl
p= we — ot
W,

£ w02 _— co2

o = 4w X 107 H/m

wo = y(Ho — Mo)

wn =y X (4xM).

For large-signal applications, however, the higher order
terms of m of & cannot be neglected. To obtain an exact
solution for the two-signal case, all higher order harmonics
through third order should be included.

My = Gy + @ 8in wit + a2 cos ant + @z Sin wet + @4 €OS wst
+ a5 sin 2wt + ag cos 2wt + a7 sin ngt
+ ag cos 2wat -+ ag sin (w1 + w2)i
+ a1 €08 (w1 + w2)t + an sin (wr — w)it

+ a2 COS (wl - wz)t + a1z sin (3w1t)

+ @ cos (Bwit) + 015 sin (Bwat) + a1 cos (Swst)
+ ay sin (2w1 + w2)t -+ ais cos (201 + we)i
+ a9 8in (201 — w2)t + @z 008 (2001 — we)t
+ @21 8in (o1 + 2w2)t 4+ a2 cos (w1 + 2we)t
+ @ sin (w1 — 2w2)t + @4 COS ~(w1 — 2ws)t (8a)
Mo = bo + b1 sin wit 4 by €0s wit - bs sin wat + by cos wst

-+ bs sin 2wit -+ bg cos 2wt + by sin 2wst + bs cos 2wt

—+ by sin (w1 + w2)t + bie cos (w1 -+ we)t ‘

+ bu sin (w1 — w2)t + bz cos (w1 — we)t

+ b1z sin (3wit) + b cos (3wit) + bus sin (3wst)

+ bys cos (Bwat) + byr sin (201 + we)t

+ bis €08 (2w1 + we)t - brg Sin (Zwr — ws)i

+ bao cos (2w1 — we)t + bor sin (w; + 20s)¢

4 baz cos (w1 + 2ws)t + bas sin (w1 — 2a0)t

+ by cos (wp — 2wt (8b)
M, = o + ¢ 8in it + ¢ oS wit + €5 8in wel + ¢4 COS wat

+ ¢58in 2wt + €5 €O 2wit + €7 8in 2wt

+ ¢5 €08 2wet + co 8in (w1 + we)t + 10 CO8 (wy + we)t

+ cusin (w1 — w2)t + €12 co8 (w1 — we)t

4+ cissin (Bwil) + cu cos (Bwit) + ¢i5 sin (Swet)

+ 16 €08 (Bwat) + cp7 sin (2wr + wa)é

+ c18 €08 (2w1 + wa)t + cro Sin (201 — wa)t

+ e cos (201 — w)l + cursin (w1 + 2ws)t

+ Cop COS (0.)1 + 2w2)t + Co3 sin (w1 - sz)t

+ Cas COS (w1 - 2602) t. (80)

There are 75 unknowns in (8a)—(8¢) with each unknown
corresponding to the magnitude of a specific harmonic.
Seventy-five simultaneous equations are found by sub-
stituting (8a)—(8¢) into the nonlinear equation of motion.
Numerical techniques are necessary to solve these sets
of equations. Since only the third-order intermodulation
with frequencies (2w; — ws) and (2ws — w1) are of primary
interest, it is unnecessary to solve the complete spectrum.
In this paper, approximate solutions using an iterative
process are derived. These analytical results are shown to
approximate the experimental results obtained.

The two RF signals are denoted by the fields

he = hp cos wit + h.e cOS wot + hes sin et + hes 8in wet (9)
ho = h91 COS wlt + h92 COS wgt + h03 sin wlt + h04 Sll’l wgt

(10)

As indicated, hs,h.4 are in quadrature phase with respect
10 As1,hae, respectively. Similarly, Ags,he are in quadrature
phase with respect to hei,he, respectively.
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The unknown RF magnetization, which consists of only
the fundamental frequencies wi,we, and the intermodula-
tion frequency (2w — we) are given by ‘

My = M1 COS Wil + Myp COS wol -+ Mys SIN w1t 4 My SIN wol
(11a)

Mg = Me €OS wit + Mgz COS wat + M3 SIN wit + Mgy SIN wol

(11b)

Me = M1 COS 2wt + Mg €OS 2t -+ My €08 (wy + wa)l

—l— Mgs COS (2(.01 - wz)t + Mg sin (2(.01 —_ wz)t

+ Mg cos (w1 — we)t + M5 sin (2ert)
+ M6 sin (2w2t) + My sin (w1 + wz)t

+ Mg sin (w1 — wa)t. (1le)

It should be observed that the intermodulation com-
ponents of m, are neglected because only the m, component,
is strongly coupled to the output transmission lines in a
distributed-type circulator. This will be further ex-
plained in the next section. In addition, only the second-
order harmonic terms are included in m,. This is because
[as indicated in (6)] second-order terms are the lowest
order in the m, component. It is through these second-
order harmonic terms that the third-order intermodula-
tion product is produced.

Substituting (9), (10), (11a), (11b) into (4) and (5)
and neglecting the mes,mes terms for the time being, the
following solutions for m,,m are found by comparing the
coefficients at both sides of the equal sign. The first-order
solutions m,,ms are found to be

_ v(Ho — Mo) Mohn — 'YMWIhOS

= 12
' Y2(Ho — Mo)? — on? (122)
v2(Hoy — Mo) Mohyy — yMwsohos -
= 12b
e ’Y2(Ho — My)? — w? ( )
Moa = ’72(H0 - Mo)Mohrs + yMowiho (120)
" 72(Ho - ]V[o)2 — a?
} Y2 (Ho — Mo) Mohw + vMowoher
rd = 12d
it 72(H0'—Mo)2— we? ( )
2 —_
— v Mo(Ho — Mo)hor + vMowrhes (138)

,.y2(H0 — M0)2 — wlz

71

*Mo(Hy — Mo)h M gwsh.
mw:’Y o Ho 0)hee + vMowshe (13b)

YH(Ho — My)? — w?

_ V:Mo(Ho — Mo)hes — vMowihn
S T (Hy — Mo — wf (13¢)

*Mo(Ho — Mo)hos — vMowsh
mM:‘Y o(Ho 0) 04 — YM owghiee (13d)

’Y2(Ho - 1‘40)2 — wy?

The following identities have been established from the
small-signal theory [117:

’YZMO(HO - Mo)

P(Ho— Mot —ap M1 (14a)
7 (H, i (14b)
M) et

ylo = K2 (14d)

Y2(Ho — Mo)? — o?

where p and « are the regular Polder tensor-elements in
small-signal theory. Using the notation of (14), one can
simplify (12) and (13) to the following form:

My = (1 — 1)hn — xihes (15a)
Mye = (2 — Dhee — kohos (15b)
Mrs = (w1 — Dhs 4 xiha (15¢)
Mg = (g2 — L) h + xoho (15d)
ma = (w1 — Dha + kb (16a)
me = (ps — l)hoz + kohm (16b)
me = (1 — 1) hes — kihn (16¢)
Mes = (pg — 1) hos — Kol (16d)

The preceding solutions are essentially the first-order
solution which has been derived in the small-signal case.
The m, solution can be found by substituting the first- -
order solution back into (6). The second-order solutions
for m, are given by

7. h T4 h - hr hand hr
My = — (z) (Maothes + Mosher — Merkes — Meshyy) (178)
2 Z2an
oh wshes — Maghya —
My = — (’1) (Mashos + Moshes — Moghes — Moshia) (17b)
2 Qe ;
Y\ (Marhos + Mashes + Mushor + Muthor — Morthes — Moghsg — Mashee — Mashisr)
My = — | = - (17¢)
2 (w1 + o)
_ Y\ (—muhos + Muhos + Myshee — Musher + Morhrs — Mashes — Moshor + Mohr1)
w1 — e
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Y\ (Muahor — Moshes — Marhsy + Moshys)
Mp =\ 3 (173)
‘ 2 2001
oz — My s — h. h. ‘
_ (’1 (Muhog — Meshos — Meshe + Ma 4) (17%)
2 20)2
Y (mrlh02 + mpha — Mypzhos — Mpshos — Mothie — Maghr + Moshes + m04hr3)
M1 =\ 5 (17g)
2 (w1 + wz) '
Y\ (Mahse + Mgha + Meshes + Moz — Morhee — Meahyy — Mashrs — Moshss)
Meg = \ = - (17]1)
2 (w1 - 602)

The third-order intermodulation product can be found by substituting all of the first- and second-order solutions back
into (4) and (5). By this iterative process, higher order solutions can be obtained. After the mathematical multiplication,
many harmonic terms are generated. If only the intermodulation harmonic (2w; — wz) terms are collected, the mag-
netization terms for the 2w; — we frequency are given by

Y (mzshrl + szhrZ + mz4hr3 - mzlhr4 + M 8Mp1 + MsMy2 + MosMyp3 — mzlmr4)
Mes = — .\ = (18&)
2 (201 — wz)
(Moshr + mzlhrz — Maghys + Moshrs + Mt + MMz — MogMys +- mzsmfo
Mes = (18b)
2 . (2601 it wg)

The preceding expressions are functions of both the fundamental and the second-order harmonics. More useful ex-
pressions which are functions of only the fundamental fields .1, hei, hse, and he, canbe derived by using (15)—-(18). In
terms only fundamental fields, the second-order terros are given by ‘

(‘Y) Kl(hr12 + hor? — Ry — ha32)
My = — 5

2601

(19a)

(’Y) 2K1(hr1hr3 + h01h03)
My = — '2“ ]

2wy

: (19b)

(1 — p2) (hsshoo + Rrhor — hr1h04 — Fhuohigs) )

‘ — 1) (hhes + heshos + hhs + b,
mz4=_<z> + (k1 k2) (hothoz + hgs o4+h1r2+h3h4)_ (19¢)
2 (01 — w2)

(ﬂl - #2) (hr1h02 - hr2h01 + hr3h94 - hashﬁ) ’

Mg = (Z) + (k1 — x2) (heahrs + hothos — huhrs — hoghs) (19d)
e 2 (w1 - wz)
In terms of only the fundamental fields, the third-order intermodulation magnetization terms are calculated to be

v\ [ (ahos + b
<5w—1) [—"—2—“—21 (e + o = hos? — ha?) — (wahes — rohor) (hushos + ho1has)]
_ ¥ (pshrs + k1hor)

[ — pa) (hssher + Rpshor — hohos — haghes) + (k1 — ko) (h01h02
2((.01 kot wz) .

ZM
2(en —
Mes = — (’Y> + hoshos — hoshr) + (61 — 2) (hrah + holha4 — huohes — hehes) ]
(201 — ws)

+ heshos + haliee + Bushed) ] + [ — [1.2) (hmhes — heohor

- (20a)
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s
4:0)1
v (b — xihes)

+ 2(wr — ws)

+ heshos + hnhe + hushes) ] +

(pahee — Kohor) (R + hot* — he® — hes?) + g:? (Bothys + hothes) (pohes + xoher)
1

[(u1 — pe2) (heshos + hyshgy — Bthos — huhes) + (k1 — k) (Rarhes

7(M1hr3 + K1h01)
-2
+ Ryshos — heshes) + (k2 — o) (habrs + horhos — hoohes —

73

Clwa — pa) (hrahey — hysha

(wl - w2)

The preceding two expressions indicate the third-order
intermodulation magnetizations mgs and me in terms of
the known fundamental fields k., ke, sy B, hey, hoe, Res,
and he. The pi,x1, and ug,«e are Polder tensor elements for
the ferrite material at frequencies w; and ws, respectively.

It should be noted that in the expressions for inter-
modulation, the intermodulation magnetization me; and
mes are proportional to the off-diagonal Polder tensor
element «, which is the prineipal factor in ferrite charac-
teristics. In the case of a pure dielectric medium (u; =
pr=1 and k = k» = 0), both of the preceding inter-
modulation terms vanish. This means that in an ideally
linear dielectric material, no intermodulation distortion
can occur. The main cause of intermodulation distortion in
ferrite materials is due to the « factor.

It should also be noted that the intermodulation mag-
netization (mgs,mes) derived here gives only the magnetic
dipole moment (which can be a source for electromagnetic
fields) produced by the.fundamental signal. In other
words, these terms give the magnetic dipole moment
oscillating at the intermodulation frequency (2w; — w2) at
a particular point in the ferrite medium, caused by the
fundamental fields A, and hg at that particular point. The
actual amount of power at the intermodulation frequency
(201 — ) depends heavily upon the condition of the
coupling. If the coupling is weak, very little power at the
intermodulation frequency is produced. On the other hand,
a large amount of power can be generated if the coupling
is very strong. In a distributed-type circulator, the cou-
pling between the field and the magnetization is through
the circular ferrite disk resonator. In the next section, a

(a)

Fig. 1.

heshes) ]
(Zor — ) - (20b)

calculation of the coupling between intermodulation fields
and the magnetization source is presented. Once the
fundamental fields &, and hs for frequencies w; and w, are
known, (20a) and (20b) can be applied to estimate inter-
modulation for arbitrary coupling structure.

Finally, the complete expression for the magnetization
of the intermodulation signal is given by

e = Mes €08 (21 — wa)t + Mmes sin (201 — wa)t  (21)

where mgs and mes are given by (20a) and (20b).

III. COUPLING OF THE INTERMODULATION
SIGNAL TO THE OUTPUT TRANSMISSION
LINES IN A DISTRIBUTED CIRCULATOR

The theory of a distributed-type circulasor has been
developed by Bosma [127] and Fay and Comstock [13].
The complete theory of circulators requires the use of the
Green’s function which is very complicated. A brief
description of the circulator will be given here. Fig. 1
shows the structure of a typical distributed-type circulator.
Three transmission lines, either stripline or microstrip, are
connected to a circular conducting disk. The choice of a
magnetic wall at r = R as the boundary condition requires
that only the TM; mode is resonant. Fig. 1(a) shows the
mode pattern before the ferrite is magnetized. With an
input power at port 1, a resonant TMgy field. pattern is
induced as shown in Fig. 1(a) (solid lines representing
the magnetic field). Note that points A and B are two null
points in this field pattern and no signal is present at
these two nulls. In Fig. 1(a), an equal amount of input
power is transmitted to port 2 and to port 3 with a small

(b)

TMon mode field pattern inside a circulator before (a) and

after (b) the magnetic field is applied.
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amount of reflection at the input. However, when the
ferrite is biased with a proper de magnetic field, the TMe;
mode pattern is rotated to a new position where one of the
nulls (point A) moves to the isolated port 2. Since there
is no energy at the null, port 2 is isolated and all the input
power is transmitted to the output port 3. This pattern
rotation theory has been derived experimentally by Fay
and Comstock [13] and proved theoretically by Wu and
Rosenbaum [14]. '

The goal of this section is to determine the coupling
between the circulator and the intermodulation magnetiza-
tion; i.e., how much intermodulation is produced by those
magnetic dipoles which are generated by the large funda-
mental signal fields. Fig. 2 shows the distributed-type
circulator with input at port 1 and output at port 2. The
w; signal is sent in through port 1 and the w. signals sent
in through port 2 (output). The third port is terminated
as usual. Only the case where the interference signal we
comes in through the output port is considered.

Since the frequency (2w: — w2) of the strong third-
order intermodulation noise is very close to the main
signal frequency «; which is resonant in the TMou mode
in the disk, the intermodulation field is also resonant in
the TMy,; mode. A special property of the TMy; mode is
that its electric field £, vanishes at the center because the
Bessel function of the first kind J;(kr) vanishes at r = 0
- [15]. A line integral for electric field £, can be taken along
the rectangle shown by the dotted line in Fig. 2 going
through the top conductor, the edge, the bottom eonduec-
tor, and the disk center. Because the electric field must
vanish at the conducting boundary, E; = E; = 0, and
since E» = 0 at the-center (as explained before), the only
contribution to this line integral comes from the electric
field at the disk edge.

Using the Maxwell equation [16]

(2w-w,) ’

3

TERMINA-
TED

Fig. 2. Rectangular loop showing the coupling between field and
magnetization for an intermodulation signal in a circulator.

fE.dz - (% fB,-dA (22)

By = ugmo + hy = pome.

where
(23)

The reason only the ms terms were calculated in the last
section is now obvious. Substitution of (21) into (22) gives
the following expression for the electric field £, at the
output port:

' R
Ez(g‘,,l_%) = p,o(2w1 - wz) [sin (20)1 - wz)t/ Meos dr
0

R
— COS (2{.01 — wz)t/ Mg dr] . (24)
0

Before (20) for me can be applied to calculate the inter-
modulation field, the field distribution of w; and w, must
be known. Referring to Bosma’s results [12], one has the
field distribution for the «; signal coming in through
port 1 as

V3
Bun = = Ay(krr) sin ot (25a)
A V3\ « .
hrwl = - (Zeff1> (?) iJl’(kﬂ') sIn wil
4 1 Ja(kr)
(Zeifl) (2) (kyr) cos @it (25b)

o = — (i) (l)_x_l.fl(kfr) i :
for = Zety) \2/ m1 (kar) St

+ ( A )(ﬁ) JV (k) cos wnt  (25¢)
Zeffl 2

where
Wi
ky = T (Hettier) 12

= radial wave propagation constant;

Zetty = 1(petty/€r) "2
= effective impedance of ferrite at frequency w;

iy

Metfy —

—_ K12
M1
= effective permeability of ferrite at w;;
¢; = relative dielectric constant of ferrite;
7 = 1207Q = intrinsic impedance of free space;

C = 3 X 10® m/s = speed of light in vacuum.

The field distribution for the interfering signal w; coming
in through the output port 3, is given by
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Ez(.oe = - if BJl(k2r) Sin o)zt (26&)
B 3 .
hoo = (52) (3) 94 ) sin
B 1 Jl(kz’l‘)
- (Zeff2> (2> ) cos wet  (26b)
e (YO
(72} Zeffz o ( kﬂ,) o

V3
— (Ze“) ( 5 )J y (kar) cos wat  (26¢)

where the variables are similar to those in (25) except that
the subscripts are now for we. The sign difference in (26¢)
is due to the different entry port.

From (25) and (26), all the fundamental components at
frequencies «, and w; inside the circulator are known and

are given by
b= = () () e &8
== () 6) g )
hys = em)( ) Jo (kar) (27¢)
hy = ( ljﬁ) < 2) Ji (kar) (27d)
ho = ( eﬁl <[2§> Jy (kar) (27e)
he = — ( Ze“2> (f’) J1 (k) (271)
- - () GO () e
= - () 6 () ) em

Substituting (20) and (27) into (24), one can calculate
the induced electric field for the intermodulation frequency
(201 — ws2). Once the electric field is known, the power at
the (2w; — ws) frequency can be calculated. For this
calculation, the following four integrals involving Bessel
functions are needed:

a= [ ["————‘(”)]ad = 0.1588 (28a)
0 X

g = / o [Jl(x)] J¢ () de = 01251 (28b)
0 X

75
\ = fo “'[J‘(”)] [J{ () dz = 0.1078  (28¢)

z1.1

b= [ [J{(@)7Fde = 0.0064 (28d)
0

where 711 = 1.84 and k = (w/¢) (tetser) /% =2 ity = k.

An exact solution for these integrals appears to be
infeasible. Hence the integrals are evaluated using numeri-
cal techniques and the resilts are presented in (28a)-
(28d).

After considerable mathematical manipulations, the
final results can be expressed as

R
(20)1 — wz) / Mos dr
0

A?B

eff[ effz

V342 (

16 (wy — w2)k >”e“1(”e“1 — petip)B  (292)

y
(20)1 - wz) / Mesg dr
0

) (g 7)o () )
) pe ~ ) (3
<32k> eff1 Zeffz Hetty w1 M1 ( + a)

[#em('(z/uz) — Meffy (:q/m)] (3N — a)] .

(01 — wp)

_|_

(29b)

At the output, the electric field E, of the s ,trong third-
order intermodulation frequency 2w; — we is found to be

V3uey? ( A*B )
eff1 effz

16(0)1 — az)k
'ﬂefﬁ(llefﬁ — Freffz)ﬁ sin (20-’1 - w2)t

Yo A’B ) [(mm) (:q)
— (X2 e = NEN
(3270) (Zeiflzzeffz Hetty wy / \u1 (M +a)

[ﬂeffl(Kz/ﬂZ) - Ffeffz('cl/p‘z):l /3) _ 0[)] ‘

(o — wp)

E 220y—wy T

*COS (2(.01 - wz)t. (30)

The intermodulation noise is found to follow the power
series law for the third-order approximation. In addition,
the electrie field is proportional to the value of «’s and
inversely proportional to the cube of the effective in-
trinsic impedance. In the next section, an example is given
to compare the estimated intermodulation power level
with the fundamental power levels.

IV. EXAMPLES

The amount of third-order intermodulation. that will be
produced in a distributed-type circulator operating at
VHF frequencies is calculated in this section. Consider a
VHF distributed-type circulator with the following charac-
teristics:
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1) saturation magnetization of ferrite, 4=M, = 600 G,
2) de bias magnetic field, Hy, = 800 Oe;

3) relative dielectric constant of ferrite, ¢, = 16;

4) main signal frequency is 125 MHz;

5) interfering signal frequency is 130 MHz.

From these assumed parameters, the following device
parameters can be calculated:

fo=v(Hs— M) = 0.56 X 10°s!
fu = X 4rM, = 1.68 X 10° s~

g = 4.157312
pe = 4.170880 ‘
= 0.704757
ks = 0.739508

pott, = 4.03808
peit, = 4.03976
Zeffl = Zeff2 = 188 Q.

For this example, the power level of the main signal ( f1)
is assumed to be 1 W (P;, = +30 dBm) and the power
level of the interfering signal ( fo) is 20 dB down or Py, =
10 dBm. From this information and an assumed 1-cm?
input-port cross-sectional area, one has

A=10V/m
B =10t V/m.

The electric field strength for the intermodulation signal
can be calculated from (30)

Ezop—os =2 0.205 X 10~*sin (201 — w2)f
+ 2.43 X 107 cos (2w; — wy)l.
The absolute value of Exq,—., is approximately | B, | ~

2.43 X 10~* V/m. The power ratio of the intermodulation
signal to the fundamental «; signal is given by

P2.f1'—f2 o I:Ez2m1—w2
- P f1 Eeau

2
] = 5.9 X 107,

Therefore, at fundamental power levels Py, = 30 dBm,
is
Pss—y, = —102 dBm.

The intermodulation power level is 132 dB down from
the strong fundamental power Py, (when Py, = +30dBm)
for the distributed-type circulator in this example. Since
the third-order intermodulation product in a distributed
circulator follows the power series rule, the intermodula-
tion power level will increase to Pyy,—y, = —42 dBm for a
main signal power of Py, = 100 W (50 dBm) and an
interfering signal power of Py, = 1 W (30 dBm). Thus the
calculated intermodulation term is approximately 92 dB
down from Py,. ‘

An experimental distributed VHF circulator recently

P;, = 10 dBm, the estimated intermodulation power level

built by Addington Laboratories has been tested for-inter-
modulation performance. For a main signal power of
Py = 50 W (47 dBm) and an interfering signal power of
P, =05 W (27 dBm), the measured third-order inter-
modulation at 2f; — fe is —39 dBm from fi = 122 MHz
and fo = 126 MHz. For the same power levels but for
fi =126 MHz and f, = 134 MHz, the measured third-
order intermodulation at 2f; — fs is —44 dBm. For the
latter case, if Py, is increased to 75 W (48.5 dBm) and.
Py, 18 0.75 W (28.5 dBm), the strong third-order inter-
modulation is measured to be —42 dBm.

Thus, for this experimental distributed circulator operat-
ing at the specified power levels, the dominating inter-
modulation term is approximately 86-91 dB down
from Py,. Several other VHT and UHF distributed circula-
tors have also been tested. Experimental results indicate
that the intermodulation product is- in the range of
80-100 dB down from the main signal when Py, is 50-100 W
and Py, is 20 dB down from Py,.

V. CONCLUSIONS

An iterative process is used to calculate the third-order
nonlinearity in ferrites. This nonlinearity is coupled by the
circulator disk resonator to the outside transmission line
to produce the third-order intermodulation terms. Analytic
expressions are obtained for the field strength and power
level of the intermodulation signal. It is found that the
field strength of the intermodulation signal is proportional
to the off-diagonal Polder tensor element « and inversely
proportional to the cube of the intrinsic effective wave
impedance Z.s: of the ferrite material.

Fromn this theoretical study, a low-intermodulation noise
circulator can be achieved by choosing low-magnetization
and high-wave-impedance ferrite material. However, a
lower magnetization can be obtained only at the expense
of bandwidth. Therefore a compromise between the band-
width and intermodulation power level should be con-
sidered in the design of a circulator. From the analytic
expression for Ezy,_ s, the intermodulation level appears
not to be a strong function of the frequency difference,
w1 — ws. This is mainly due to the slow variation of effec-
tive permeability uess with respect to frequency. Since the
field strength of the intermodulation signal is proportional
to the square of the f; field and directly proportional to the
fo field strength, the power series rule is followed by the
intermodulation noise produced in a distributed-type
circulator. x

Because the volume of the distributed-type circulator is
normally larger than that of the lumped-element circulator
[17], [18], the field strength in the distributed-type
circulator is smaller than that of the lumped counterpart.
Therefore the intermodulation noise produced in a distri-
buted-type circulator will in general be less than that
produced in a lumped-element circulator.
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A Theoretical Study of Light Beams Guided Along
Tapered Lenslike Media, and Their Applications

SHINNOSUKE SAWA, MEMBER, IEEE

Abstract—Propagation behavior of light beams along the tapered
lenslike media, in which both the focusing parameter and the on-
axis permittivity have gradients in the axial direction, is investigated
in detail, theoretically and numerically, with the help of the approxi~
mate wave theory. As a result, it is clarified that the tapered lenslike
media can be classified into two kinds, according to the differences
of the focusing property. Matched incidence conditions to eliminate
the fluctuations of the light beam are also clarified. As an application
of the theory, a spot-size transducer and a mode transducer for use
in a circular bend of the light focusing waveguide are proposed, and
the design conditions are derived. A ray-oscillation suppressor (ROS)
is also proposed, and its applicability to some new optical circuit
components is discussed.
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I. INTRODUCTION

PTICAL waveguides such as parabolic-index fibers
termed seLFoc [1] are technologically important
because of the applicability to optical communication,
optical instruments, and optical date processing. As is
well known, waveguides of this type consist of a lens-
like medium whose permittivity decreases guadratically
with distance in the transverse direction from the guide
axis. ‘
The lenslike medium with a permittivity profile varying
not only in the transverse direction but also in the direction
of the guide axis may be termed a ‘‘taperved lenslike
medium.”” The tapered lenslike medium is expected to
have various interesting applications to optical circuit
components, since it has a light-focusing property varying
slowly and continuously along the axial direction.
Several papers have already been reported on the
tapered lenslike media [2]-[6]. For example, Tien et al.



